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SYNOPSIS

Electromagnetic flelds in inhomogenéous and dissipative
media have attracted considerable attention. Such medid are cha=
racterized in general by a dlelectric constant € and a conducti=
vity ¢ that vary with the coordinates x, y, 2. Examples are to
be found in the field of inhomogeneous plasma, in underwater

communication, in E. M. lenses and in a study of antennas used
a8 probes in such media:

This researc. is restricted t6 radially strarified medla
with e= é(r), 6 = o(r), where r is the radial distance in &phe-
rical coordinates. In these coordinates Maxwell's equations are
still separable if the complex dielectric factor ¥t =€ -=ig/w =
= eéf(f) depends only on r. The angular equation 1s not affected.
However, the radial equation is no longer the spherlcal Bessel
equation of the homogeneous case. Its coefficlents depend on the
"stratification function" f(r) and contain additional singulari-
ties in the complex r-plane. The biconical antenna 1s the most
general problem that can be encountered; it requires the solution
of the complicated radial equation from r=0 to r=oc. The theéory,
nevertheless, 18 readily applicable to all electromagnetic

For the stratification function f(r) the following form
was considered: f(r) = (r+a)/(r+b), where a and b are constants,
in general complex. Even this simple dependence introduces two
new finite singularities in the radial differential equation
beyond the usual singularities at r=0 and r=e. Furthermore, it
has been proved that the analysis can readlly be extended to more
general types of f(r).

The antenna problem requires the analytical solution of the
radial wave equation inside and outside the antenna and the

matching of the E. M. flelds across the spherical surface



L IO

vii
containing the antenna. Series solutions Ry(x), R,(x) around x=0
and asymptotic solutions Rz(x), R, (x) around x= s of the second=
order differential equation are found first. For computational
purposes and, mainly, for reasons of matching the linear con-
necting formulas between the two sets of solutions (around x=0
and x=c ) of the equation must be found. They provide the analy-
tic continuation of R3(x), R,(x) in the vieinity of x=0 and the

asymptotic expa.n‘sivons/ of ‘Rl(x)‘, Re(x) for large {X|. The constamt——
coefficients of the linear connecting formulas are found by
solving the assoclated difference equation and 1ts adjoint.

A generalization of Ford's method (reference 7 in the BIBLIO=
GRAPHY), concerning the asymptotic expansions of solutions of
differential equations with polynomial coefficlents and with
three or more regular singular points and one irregular at infis-
nity, was arrived at. It was then extended to the speclal but
important case of integral values for the dlfference of exponents
of the differential equation, thus providing the complete asympto=
tic expansion of the second, logarithmiec solution of the equation.
Explicit formulas for the evaluation of the constant coefficlients
of these expansions have beén developed; each coefficlent depends
only on a single solution of the adjoint difference equation
assoclated with the original differential equation.

Numerical computations were performed on an IBM 7090 compu=
ter. Six different cases of stratified media were considered,
five of them dealing with dissipative media. In each case the
input impedance of the blconical antenna Zis Ri*ixi was computed
and plotted for eight different cone angles: 1/20°, 1/4°, 1°, 2°,
30°, 39.23°, 55°, 70°. The electrical length of the antenna was
varied from O to 7 (in certain cases up to 9 or 1l1). ‘

Concerning the antenna, all effects of dissipation and 3
stratification, expected on physical grounds and observed expe= .
rimentally for dipole antennas, were clearly exhiblited. General

conclusions could be drawn regarding the behaviour of the antenna
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in such media by mere inspection and comparison of the graphs
From the mathematical point of view the results of the

¢computations completely verified the theory and established its
capabillity to yield accurate numbers. In the overlapping region
between convergent and asymptotic series representations, agree-
ment of 4, even 5, decimals was obtained, with single precision
(8~decimal) arithmetic. The coefficients of the asymptotie

expansions were c¢omputed with an accuracy of 4 to 6 decimals.




PART I

THE BICONICAL ANTENNA IN &

RADIALLY STRATIFIED MEDIUM

CHAPTER 1

FORMULATION OF THE PROBLEM

INTRODUCTION

This research 18 concerned with the solution of the
following specific problem :

" The behaviour of a biconical antenna immersed in a
radlally and continuously stratified medium."

It should be emphasized froém the start, however, that the
investigation is by no means restricted to the blconical antenna.
Primarily, it 1s concerned with the theory of radially and
continuously stratified media and can be readily applied to all
electromagnetic problems arising in the presence of such media.
Examples: Radially stratified electromagnetic lens, E.M. wave
propagation in such medla, scattering by a spherical object
observed that the biconical antenna is the most general problem;
in the following sense: It requires the solution of the
differentlal equation for the radial function in the whole
interval 04rg£ec, when, as assumed here, the stratification
extends from r =0 to »r =oo, It will be seen that this leads
to the necessity of determining asymptotic expansions for the
solutions of the radial equation valid in the neighborhood of

l=1
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1=2

arise in a lens preéblem for example. C. T. Tal, in his paper on
Luneberg lens (1 pp. 123<124), obtains a series solution for the
radial function convergent for p< 2p, while the values of o,
in this case,; never exceed Py 86, the series solution around
p=0 18 completely adequate. For the biconical antenna, however,

we essentially need the analytic continuation of the solutions
in the whole interval 04 r £e. These statements will become
¢lear later in the paper and in the course of developing the
theory.

It can be argued at this point that the biconical antenna
waves, 8ince only TM and TEM waves are inveclved. It will be seen,
however, that the differential equation for the radial TM function
is more general than the equation corresponding to TE waves.
After obtaining these equations, a discussion relative to this
point will be included.

As a general outline, the paper is divided into two PARTS.
In PART I, Chapter 1 deals with the formulation of the problem;
Chapter 2 with the specific problem of a biconical antenna in a
radially stratified medium; Chapter 3 includes and discusses
numericai results obtained in a number of cases. The complete
mathematical analysis is developed in PART II, divided into
three chapters. In Chapter 1 series expansions of the functions
involved are obtained; Chapter 2 is concerned with their asympto=
tic expansions and Chapter 3 contains remarks relative to the
theory developed in the previous chapters as well as possible
generallzations.

The complexity of the problem depends exclusively on the
"stratification function" f(r), where

€(r) = €£(r) , k3(r) = o%pe(r) =x2e(r) (1-1)

Solutions have been obtained in various cases for certaln simple
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1=3
funetiens f(r) and can be found in the literature. Many of them
are mentioned in references 1 and 2 in the BIBLIOGRAPHY. This
represents a type of varlation shown in figure (1=1). f(r) starts
from finite values, greater or less than 1, at r=0 and conti-
nuously approaches the value 1 at r=oo: It will be seen that
such a form is more general and moré complicated than all cases
considered up to the present. On the other hand, a variation
such as the one shown in figure (1=1), so loosely defined by the
above requirements, can be represented by an infinite number of
functional forms. Unfortunately, complete solutions can not be
obtained in the general case. Here, one of the simplest forms for
f(r) was chosen, satisfying the above requirements. Namely:

= 14 =2

X+a_ s
X+b *

Xt (1=2)

f(x) =

where a,b are constant parameters, in general complex, and
¢ = asb . (1-3)

A complete solution of the problem was obtained in this
case. The parameters a and b provide f(r) with the flexibility
to fit a great number of varliations in accordance with the
requirements of figure (1-1). And, most important, desplte this
severe restriction on the form of f(r), the analysis that follows
permits an insight into the complexity of the problem and the
type of complications that are introduced as f(r) becomes more
complicated and general in form. In fact, it will be seen that
types of f£(r) of a similar functional form. Furthermore, the
analysis shows by 1itself what kind of generalizations in the
form of f(r) can be introduced without rendering the method of
solution inapplicable. Discuseions, relative to these statements,
are given at the appropriate stages of the analysis.
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MAXWELL'S EQUATIONS IN A RADIALLY STRATIFIED MEDIUM
In the time periodic case with assumed time dependence el®®
and in a radially stratified and generally dissipative medium,
Maxwell's equations aret

T x B = siapfl (1=4)

Ix f = im"é (r)8 (1=5)

The boundary conditions between the medium and a perfect conductor
(in which E = E = 0 )are (3 p. 366):

nxf=o0 (1-6)
f

Y . ﬁ 0 L] (1‘57)
s, the absolute permeability of the medium, is considered real
and constant. § , the complex dielectric factor, is given by
(3 ps 366):

T = ¢(l-10/we ) =e-10/a (1-8)
and 1s here c¢onsidered to be a function of the radius r. Thus
g =%(r). More specific definitions will be given later.

We now express Maxwell's equations (1=-4),(i=5) in spherical
coordinates r,0,¢ . If variations with respect to ¢ are not

i

involved, i.e. if %? = 0 , we obtalni
%g(sme Ey) = -loursine H, (1=9)
(rE¢) 1murHe (i=10)
?—(rEe) —f—é = ~laurH, (1-11)
o 10§ (r)sineé §, (1-12)

L(I‘HQ) = -iw‘g(r)r‘,,, (1-13)

?‘( siné H

dH,
E.?(rﬂe) - ﬂ = i@ g(r)r3¢ . (1-14)

1
3
1
4
1
!
i

R N VAT SV
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The case considered, %% = 0, corresponds to the specific
problem of a straight bilconical antenna, placed at the center of
the spherically stratified medium, coinciding, naturally, with
the origin of the spherical coordinate system r,6,¢ as shown in
figure (1=2). No loss of generality is introduced by considering
this special case. It will be seen in a short while, that the
only modification introduced by theée radlal stratification appears

in the radial equation. The angulay functions satisfy the same _

équations; which would be obtained if the medium were consldered
homogeneous, i.e. if f(r)E 1. These results are also valild in
the géﬁé?éi case of thréésdiménsionél vafiatioﬁsz gee f@f

the electromagnetic fleld assoclated with a radially stratified
ﬁeaium, are ébtainéd by sciviﬁg difectiy the veetor wave equation
statements made above. Furthermore, it ylelds the same radial
equations for TM, TE and TEM waves as can be obtained by solving
the simplified equations (1=9) to (1-14).

These equations separate into two sets. The first,
containing equations (1-11),(1-12) and (1-13), involves Hys Egs
E only and corresponds to TM waves. The second, containing
equations (1=9),(1-10),(1-14), involves E¢, Hgs H, only and
corresponds to TE waves.

Equations (1-12),(1-13) express E, and

Eg in terms of H¢. ‘Substituting in (1-11) we obtain:
W 1 1 2 e
{- .g r— \r(rH¢)] ~°e[,g( ) Toling %6(81119 H,)] - 0f p.rH, (1-15)

We now separate the variables:
‘H¢(r,9) = F(r) ©(e) (1-16)

and, after division by s+ (1=15) becomes:
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rE(r) dr.l =
Frk delgt ER(oP () e 0B B (e =
R -
@(e) de[_i_' de(sine .(6))] = v(v+l) ,
vhere v(v+l) 16 the separation constant. Calling
rF(r) = R(r) (1-17)
we obtain?
R(r) +tméug‘(‘r‘) - X(¥+1)3p(r) = 0 (1-18)
g?t 1 e(sine.(e))]-o- v(vel) ©®(0) = , (1-19)
It can be verified immediately that this last equation is
satisfied by
®(o) = 448l (1-20)
where T(6) 1is any solution of the Legendre differential
equation:
&5(a1n0 §)+v(v+1)sine T(6) = 0 . (1-21)
We obtain in this manner the following expressions:
Hy(r,0) = 5;(.——1 -‘% (1=22)
=11 4T dR
Eg(r,0) = 2 TE(p) 46 dr (1-23)
E.(r,6) = & v(vs1) BLEL 1(e) (1-24)
T e r2k(r)
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TE Spherical Waves: In a similar way, subetituting from
(1=9),(1=10) into (1~14) we obtain:

l-—(r'.'!:¢)-o- [rsine ze(s:l.ne E¢)] = - ut(r)rE . (1=25)
Separating and following similar stepa, wé obtain:
_Ey(r,0) = (1=26)
Hy(r,0) = - 1= S 8 (1-27)
Ho(r10) = = &= v(ve1) ﬁ;; (e) (1-28)

vwhere T(©) satisfies again Legendre's equation (1-21), while
the equation satisfied by R(r) is:

a2R(r)
ar?

+ [@PuE(r) - . (1-29)

At this point, we may observe the following: if the
stratification involved variations with respect to 6, i.e. if
E=%(r,8) = even in the form E = f(r)g(e) = we would not be
able to separate the variables in equations (:I_.-J_.‘-S) and (1-25).
It 1s this essential difficulty which forces us to restrict the
problem to radial stratifications.

IEM Spherical Waves: In this case E = H = 0 . Being here
interested only in the field with circular magnetic lines, we
can derive the relations for TEM waves by considering them as
a special case of TM waves with E.= 0 . Then, from (1-24) we

obtain:
v=0 , (1-30)

vhile (1-18) and (1-21) become:



. e «
i;g 'S_(_)_ 0% & (r) R(r) = (1-31)

%-g(éifﬁé ﬁ) =0 .
Put now:
g = ¥,(6) (1=32)

éR
Rir) = e (1433)

where R (r) satisfies the equationt

a%r
=2 + A E(r) Ry(0) =0 . (1-34)

Divide by Z (r) and differentiate with respect to r:

._235.(_).932_,
E(r) ar® E?(r)dr *ouR(r) =0,

which 1s identical with (1-31). Also ¥,(6) satisfies:
$5(stn0 ¥ (o)) =0 . (1-35)

8o, with R, (r) and ¥ (6) satisfying (1-34) and (1-35) we obtain
from (1-22),(1~23),(1-32) and (1-33) the following expressions
for the TEM field with circular magnetic lines, 1.e. with Ho= O :

E,(r,0) =0 (1-36)

|

]
]
fI;w
wg; gy
| By ]
1~
-
)
~

By(r,0) %f--ivo(e) : (1-38)

n

m‘

These expressions and equations (1-34),(1-35) could be
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obtained in a more simple way from the original set of Maxwell's
équations (2-11) to6 (1=13) using the fact that in the present
case E.= O . The above method was preferred, however, because it
shows that, analytically, the TEM field 1s derivable as a special
from the TM wave solutions.

It is clear now that the angular equations (1-21) and (1=35)
present no new problem. The probleéem centers around the solution
of the radial equations (1-18),(1=29) and (1-34). The last one

_

is a special case of (1=29), or, through (1-33) and (I=31), &
special case of (1-18).
We introduce the electrical radial distance:
X =Kp (1=39)
£(r) = f(x/k) = ((’(x) (1=40)
d")au Z(r)

and equations (1=18);(1=29) and (1-34) become:

11!

X cf (x) (1=41)

™ waves

(%) ;. (¢ (x) - ﬂ—"@ﬂ)-lla(x)w (1-42)
<2

. .

%80 | [o(x) - -"-(l’ill] R(x) = (1-43)

TE wavec

a®r_(x)
E +?(x> R (x) ° (1-44)
dx~

TEM waves

In a dissipative medium § is complex. Then:

x=xkr = ofpe[f(h)- 1g(h)]Ir (1-45)

takes on complex values in the fourth quadrant of the complex
x-plane, from x=0 to x=0o0 . In equation (1-45):

h=o/w¢ , f(h)=oosh(3sinh™h) , g(h)=simh(Fsinh™ln) .  (1-46)
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Tables for f(h) and g(h) can be found in reference 4. )
DISCUSSION OF THE RADIAL EQUATIONS
Equation (1-44) for the TEM waves is a speciai case of
(1=42), a3 it has been explained. It can be solved separately,
if it is more convenient to do 80.
We consider now equation (1=42) for the TM wavea. As it
would be expécted, in the homogeneous case, i.e., when <?(x)é 1,
1t reduces to the apherical Bessel equation:

R"(x) + (1« YL g(x) =0 (1-47)
X

in agreement with estabiished resuits in this case (5, 6 pp. 7=9).
There exists a correspondence between equations (1=47) and (1=42)
and it will be pointed cui from time t6 iime. Equation (1=47) has
a regular singular point at x-0 and an irreguiar singularity at
x= o0 (9 pp. 160-161 168-178 417-4z8, 10 pp. 58-77). On the other
hand, equation (1=42) 1s much more compiicateds in addition to
the above mentioned singularities, it has singular points at the
singularities of @ (x) (or of cép'(x,) ) and at the zeros of ¢(x).
The nature of these singularities depends on the nature cf the
singular points and of the zeros of ¢{x). We refer, of course,
to the complex x-piane when we make these statemenis. Regarding
now eguation {1-43) for the TE waves, we cbserve that, in
addition to the singular points at x=0 and x-00 , it has
singularities at the singular pcints of q;(x). But the zeros of
?(x) are no longer singularities of the equation. So, (1=42)
has more singularities than (1-43) = at the zeros of ¢(x) - and
18 a more complicated and general differential equation than
(1=43) is. At this point, reference to the discussion on page 1=2
can be made. In the specific problem of the biconical antenna,
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we are only concerned with TM waves. We conslder only equation
(1=42), not (1=43), but we treat the more general case.

In accordance with the requirements on ¢(x) as shown in
figure (1=1) and the discusslon thereof, we now consider the
following special form for CP(x)e

¢ = 58 = 20 g = 1) = 12 (1.4
c=ab, (1<49)

With the special form of <?(x), as given by (1-48), equation

(1=42) for TM waves becomes:

For comparison, equation (1-43) for TE waves reduces in this
case to!

A ﬂ-”*—l)-l R(x)

a%R(x
dxg

0. (1-51)

It 18 obvious now that (1-50) has all the singularities of (1-51)
and an additionai reguiar singuiarity’ at x=-a. So, the method of
more simple equatlon (l-5l)

Equation (1-50) has three regular singular points at x=0,
x==-a, x==b and an irregular singularlity of the first rank at
x=00 (9 pp. 417-428, 10 pp. 58=77). That 1is, 1t possesses two
more regular singularities than the Bessel equation (1-47).
Problems treated so far in the llterature, dealt with
®stratification functions" of such simple form, that no additio-
nal singularities were introduced in the radial equation. In

such cases 1t is possible to i1dentify the solutions with well-
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known functions, for example confluent hypergeometric or Bessel
functions with argument arm, where 4@ and m are appropriate

one more singularity were also treated, but they dealt with
sltuations where the stratification terminates at a finite

Pai's paper (1), which also refers to other similar preblems
treated up to the present time. The comments on page l=2 reveal

the additional difficulties that the biconical antenna presents,

when the stratification extends from r=0 to r=c0 . We éan also

see now that a stratification in accordance with the requirements -
of figure (1-1);, even in its simplest form (1-48); introduces at

waves: Later in this paper, Chapter 3, PART lI, we shall see how
the method of solution can be generalized to more complicated
forms for @(x).
the equation around x=0 with the method of Frobenius, we obtain
two power series solutions R;(x) and R,(x) (defined more
precisely in PART II), whose radius of convergence is limited by
the nearest to the origin singularity, i.e. valid within the
¢ircle |xI<{min(\al,|b] ). By a sultable change of variable, x to
t, we can obtain for Ri(X) and Ra(x) power series expressions in
terms of t, valid within the circle [t1{1 , for example, which
provide, in the x-plane, the analytlic continuation of Ry(x) and
R,(x) outside the circle |xi{min(lal,|bl), in fact into the
possibilities will be seen more clearly later, in the course of
obtaining explicit solutions to equation (1-50).

Solutions Bl(x) and Ra(x) of (1-50) correspond to the
solutions JE’JV+1/2(x) and Ji!“v+1/2(x) of equation (1-47),
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respectively. Referring to figure (1-2), we observe that in the
antenna region (1) we have to use the solution Ri(x) of the
radial equation. R,(x) becomes infinite at x=0. In free space,
region (2) in figure (1-2), we must use a third solution R,(x)
of (1-50), which satisfies the radiation condition at X=eo , i.e.
the one which corresponds to an outgoing wave. A fourth solution
az(x)\exists, representing anlincoming wave from infinity. Rh(x)
and Rz(x) correspond to VX Hnii}é(xﬁ and $§*Hni%}2(x) of equation
(1=47), respectively. Here v takes up only odd integral values
v=n=1,3,5,.s. a8 will be seen (6 pp. 41=43).

For Rz(x) and R4(x) we can obtain formal solutions by
solving equation (1-<50) around the singular point X=s6 . But the
singularity 1s now irregular, of finite rank, in this case 1.
According to well-éstablished results in the theory of
involved in the so obtained formal solutions R3(x) and Ra(x) are
asymptotic in the precise sense of Poincare's definition (9 pp.
168~1T4 444-445, 10 pp. 69=72). They are good for numerical
computations if x 1s large.

However, the blconical antenna involves the problem of
matching the solutions across the boundary sphere S, figure (1-2).
This requires, in turn, the evaluation of R,(x) and RA(X) at
x=l, where { 1s the electrical length of the antenna. In general,
¢ 1s smell enough, unless the antenna is sufficlently long, and
Ra({) can not be evaluated with the required accuracy by using
the asymptotic serles. On the other hand, if the antenna 1s long,
Bl(t) can not be evaluated accurately by using the convergent
expressions for Rl(x). since away from x=0, thelr convergence 1s
slow. More generally, a convergent series is of no use for
numerical calculations if we need values at points away from the
center of their circle of convergence. The rate of convergence
soon becomes slow as we move away from the center, even if we are
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stiii away from the cifcumferénée af the cenvergénée éircié. Thé
18, in general; quite limited.
Since equation (1-50) i1s of the second order, any of its
solutions ¢an be expressed as a linear combination of two other
independent solutions. That 1s, we have!

R
Pl
0
ol
L

= Ay Ry(x) + Ay, Ry(x) (1=52)

pos)
~
L
B
gt
I

= Ags Ry(x) + Ay, Ry(x) o (1=53)
Compareé with the relations

1 1
% $+i/2(x)
i,
2

1

jv*l/E(X)

ifi/e(x’ - 45l o)

g
2
¢ x) =k
Neer/afx) = 31

corresponding to equation (1=47). If we can evaluate the coeffi-
clents of these linear relations, we answer all the problems
arising. Equation (1-52) provides in essence an asymptotic
representation for Rl(x) and enables us to evaluate values of
this function for large x. Also, solving (1-52) and (1-53) in
terms of R,(x), we obtain:

R4(x) Ahl Rl(x) + A42 R2(x) (1=54)

an equation, which gives the analytic contlnuation of RA(x) in
the vicinlty of x=0 and enables us to evaluate 1ts values for
small x. The determination of the above coefficients is in itself
& major problem. In effect, it constitutes the main problem of
this investigation. This is preclsely what we meant on page 1-3
when we referred to a "complete solution" of the problem. The
present discussion also clarifies the statements made on pages
1-1, 1-2, 1-12, regarding the generality inherent in the
biconical antenna.
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It may be argued at this point that it 1s not actually
necessary to extend the stratification beyond a certaln value r,
or X,. Beyond this point we cen consider ((x)=1 and, instead of
R, (x), make use of X Hélﬂ /(%) of equation (1-47). We assume,
of céourse; that CP("@) is very close to 1. This would introduce
a new matching problem across the sphere rEp, Or X=X, unless
Xo= (4 s 1.6, unless the atratification is terminated at the end
of the antenna, an assumption which Introduces a severe restris=
ction into the problem, indeed reduces it to a very special case.
An additlonal matching problem at x=x, would, of course, require
additional computational work; but, more important, it 1is
precisely the matching probleém that introduces all the approxi-
mations to the solution of the, otherwlse, exactly formulated
problem of the biconical antenna. Apart from all these conside=
rations, we would still need to evaluate R,(x) in the interval
0<% £x, and also R,(x) in the interval (< x<x . Unless turther
severe limitations are intrcduced, the convergéent series express

close to x, and the necessity of obtaining the linear relations
(1~52) and (1-53) would not be avoided. Not to mention the fact
that specializations of this sort restrict the generality of the
problem.
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Fig. 1-2 Geometrical configuration
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Fig. 1-3 Singularities of equation (1-50)in the X-plane
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CHAPTER 2

THE BICONICAL ANTENNA IMMERSED IN A RADIALLY STRATIFIED MEDIUM

The configuration is shown in figure (1-2). The results of
”the preceding chapter show that the bieonlcal antenna theory for
homogeneous media is readlly applicable to stratified medla if

the proper solutions of the radlal equatlons are used. We will

not develop the theory step by step in this chapter. Detaliled
expositions can be found in references 5 and 6. We will make use

of the results of the theory without deriving them, as long as it
is obvious that they apply to the preaent case. Wherever eéessentlial
modifications are neceasary, the analysis will be given in detail.
In this connection the most important observation is that
the angular equations for TM and TEM waves are not altered. It
is then c¢lear; that the problems of satisfying the boundary
conditions and of matching the flelds across the boundary S, at
x:ﬂ,, éan be solved exactly as in the case of homogeneous media.
We start with the dominant, or TEM, interior mode. The field
components were found in equations (1-37) and (1-39), or with
Kr=x:

R, (x) 1

Bg(x,0) = ~lopx === =f=s (2-1)
2 dR (x) a1
H,(x,0) = i, (2=2)

x "5?— 8iné

¢
where 1/s8in6 is the solution of the angular equation (1-35), the
constant being included in R (x). The equation for R, (x) is
(1-44)5 with @(x)= -’%—% 1t becomes!

Ro(x) + 22 R (x) =0 . (2-3)



Putting =x+b=2 it becomes:

Rg(z) + (1+¢/2) R (2z) = 0 . (2=4)

The solution of this equation can be expressed in terms of
confluent hypergeometric functions. Put: R_(z) = z6°%u(z) . The
equation for u(z) is:

O

. S o 2. a2 s . B
265%" (2)42 $=(26%%)ul(2)+[ (140/2)20%%+ S==(24%%)Ju(2) = 0,
) T

or, after division by ééz :
zu"(2)+2(1+62)u(z)+[ (146°) z4c+28u(z) = 0 .
Take &=-1 and change the independent variable 2=t i

2L 4(2-21pt) “;t~+(eaai)u(t> =0 .

Finally put: 2ip=l, B=1/2i, z=t/21, t=21z. The equation becomes:

tu’(t)+(2=t)ult)+(c/21=1)u(t) =0 . (2=5)

|

Comparing with the confluent hypergeometric equationt
xy"+(y=x)y'=ay =0 , y = K F(alvix)+K,G(a| vl x) (2-6)
we see that a general solution of (2=5) 1s:
u(z) = KyF(1+1c/2| 2 | 212)+K,G(1+1c/2 | 2 | 212) (2-7)
Finally the general solution for R (x) is:
Ry(x) = (x+b)e XK F(1+1¢/2 | 2 | 21 (x+b))+

 eE8(1ste/21 2] 20(x0))] (2-8)

G(a|r|2) is the second solution of the confluent hyper-
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geometric equation, the so<~called Gordon function (11 pp. 577-
646), when ¥ = n = 1,2,3,... 18 a positive integer. Here we have
Y=2.
Another set of independent solutions, the Whittaker
functions, called U,(alviz), Uy(aiylz) in reference 11, are
defined in terms of the following asymptotic serlest

where, with z Elzléi¢ and - { ¢ {7 , the following interpretation
must be made:

L(9-m) L (Lgymas poe Glma (2-11)

Ro(x) can be expressed in terms of these solutions as follows:

Ro(x)=(x+b) e 1 [K,U; (141c/2|2| 28 (x+b) )+
+K, U (141e/2|2]20(x4b)) ] . (2-12)

Numerical values for F(l+ic/2|2|21(x+b)) and
@(1+ic/2]2]21(x+b)) are not tabulated. The argument is z=21(x+b)
and in most cases, unless |bl is very small, |z| 1s large and
renders the well-known convergent serles expressions for these
functions useless for numerical computations. It is more
advantageous, therefore, to solve equation (2-3) directly around
the non-singular point x=0. Such necessity does not arise, 1f

bl is large enough to permit direct use of the asymptotic
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expressions (2-9) and (2-10).

Equation (2-3) has a regular singularity at x==b and a
irregular one at x=eo. X=0 ls an ordinary point. Convergent series
expressions, valid for all values of x in the right half plane of
interest and with a better rate of convergence, can be obtalned,
if we make the following change of variablet

2bt (2=13)

‘*‘
([

W

x

X
x+2b I-t
Bilinear transformations of this form will be used and discussed
later, in Chapter 1, PART II, where the solution of (1=50) is
investigated.
In terms of the new independent variable t equation (2=3) is

expressed as follows:

2

R.(t) R_(t)
(1-t)>(2- t2)~;:2 fffff - -2(1-t)3(1- tz)*“‘LW’>4

+ 4b[(2b-a)t+a]R (t) = 0 . (2-14)

A regular singularity appears at t=-1, correéespondingly to x=<b,

an irregular at t=l, x=o0, while t=0, x=0, 1s an ordinary point.

In order to obtain convergent series expansions around t=0 we put!
R(t) = Z e t® , Iti1

and substitute into (2-14). Collecting coefficlents of equal

powers of t and equating to zero we obtain the recurrence formula

o= (n-l) (3n-4)e

n~ n(n=1)

+2b(b=c) Je

(\J\/\

=2[ (n=2) (n=1)+2bale _. ‘-;[ (n=3) (n=4) +

n=1
+(n-4) (3n-11)e,,_,=(n-4) (n~5)e,_ }» ;
0 , m=1,2,39000 o (2‘15)

n=3

®.m
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The process leaves e, and e, undetermined as the constants of

integration. Two independent aolutions are defined as follows:

=1 8= 03 1L (2-16)

Réi(x) = Rél(t) l+92t +93t #.0s S @

prs
S
"

R_,(x) =R = t¢g2t2+g3t3+... P 8,= 04 83= 1 3 |t1<1.(2417)

252

The same recurrence formula (2=15) is used for both °§'9 and ga's,

if the proper initlal conditions, given in (2<16) and (2<17),
respectively, are inserted. At x=0, t=0 we have?

In terms of these functions we can write:

Infinite Biconical Antennat The fleld 1s expressed by
equations (2-1),(2-2). The condition of an outgoing wave to
infinity requires, in view of (2-9) and (2-10), that in the

present case!

R (x) = co(xasb)e“ixvg(l*;c;/z‘l2‘|21(X*b)) »0¢Rex{ oo (2-20)

where C_ 1s a constant. The transverse voltage and radial current
in the upper cone are defined as follows:

nf ‘fﬂgeo e - [“’eode _ P %
vb(X);‘,e "Egrde = !OQRO(K),QO Tr5 =e@uRQ(x)21ncot§— (2-21)

(o}
inf faﬂ : s Bl
I,(x)= [}, Hyreine 4 Je—;eo = amk R(x) . (2-22)

The so-called characteristic impedance of the biconical antenna
1s defined by:
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inf inf

2,2 V(%) /1,(x) = = 48 60— 3ncot 2 (2-23)

where R (x) is defined in (2=20). For non=dissipative media it 1is
real, bécauéé, despite the i factor, the functions Ro(?x) and
ﬁé(x) are complex. But it is no longer a constant; it depends on
the radial dlstance x. This is the most important effect caused
by the stratification of the medium.

Finite Biconical Antenna of Blectrical Length {. Field
Expressions: For the dominant TEM mode in the region 0¢ x&( the
field 15 given again by (2-1),(2=2). The solution Ry(x) of the
radial equation is given by either (2-12) or (2=19).

For the hlgher TM modeés in all regions; the fields are given
by (1=22) to (1-24). Introducing the electrical distance x =KPr
and remembering from (1=41), that in all cases we called:

@2 E(r) = «%#(r) = «?¢(x), vhere K= constant, we can rewrite
these equations as followst

Hy(x,0) = Bl & (2-24)
Eg(x,0) = lap ;‘#)33 (2-25)

Er(x.e) 1muv(v+1)—}uﬁl-f T(e) . (2=26)
" 2 ¢

For the interior TM modes in the regilon 04 «x éé we take
R(x) = R,(x), where, as explained in Chapter 1, R,(x) 1s the
gsolution of equation (1=50), which is finite at x=0. The precise
definition of Rl(x) is given in Chapter 1, PART II, by equation
(1-10). T(®) satisfies the Legendre differential equation (1-21).
A8 in references 5 and 6 we choose the odd solution satisfying
the symmetry condition about the ground plane €=m/2.

7(0) = M (cose) = % [P (cos0)-P, (-cos0)] . (2-27)
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We follow the notation of reference 6. In reference 5, the above
function 18 denoted by L. (cose).
The boundary condition E, (x,e )= E.(x, =0, ) =0 yields
the infinite set of characteristic values v It 13 expressed by
the following transcendental equationt

M, (coso ) o . (2-28)

S St~

For 04x4€ thé total interior field is thent

x® G(X)E, .(x,0) =Z a = Ryy() M, (cose) (2=29)
?> ir v ()

a, Ry, (%) 4

By g(x,0)= 2 - ,%—c—rr‘v:f ﬁl“(z) 3 My

R_(x) -
M, _(co86)=1mux s_g'ﬁei' (2=30)

(x)
xH1¢(x,e) r—-;m Fli(c—) Fre) M, (cose)+K2R (x)—i— (2=31)

The subscript v was added to Ri(x) to denote the characteristie
value to which it corresponds, while the added subseript 1 in
Elr etc., refers to the interior region (1) in figure (1=2). We
must also remember, that the general solution R(x) of (1-50) for
v=0, can be expressed as kR (x), where R_(x) 1s the general
solution of (2-3) in either of the forms (2-12) or (2-19); with
this in mind, we can check equations (2-29) to (2=31) dimensio-
nally and prove them correct.

The total radial current in the upper cone is given by:

I(x)= &8 x81n0,Hy o (x,0,) = I (x) + I(x) , (2-32)
where:
I,(x) = 2wk Ry(x) (2-33)

is the principal current assoclated with the interior dominant
TEM mode and
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218ine (x)
I(x)= ": n 9.%_ v(vﬂ n-;--—:—(-%- I M, (cosxe ) (2-34)

is the complimentary current assocliated with the higher interier
™ modes. From the definition (1-10), PART II, of Rlv(x) and for
v> 0, we observe that R,.(0) = 0 , Then!

I‘(O) =0 ’ 1(0) = IG(O) . (2-35)

—d

The transverse voltage V(x) 1is defined byt

-9
V(x)= gﬁ £ £, 46 = H~touc)R, (x)Je °—‘i—°— +

1 s Rl (x) (w6,
4 =i va_ R1:(L) ) %M (cos®) d6 .

From (2-27), (2-28) we conclude that all the terms in the sum
are O. Thus:
0.
V(x) = V (x) = <20auR (x)1ncot 32 (2-36)
The so defined voltage 18 due only to the dominant mode,
irrespectively of x. Callingt

_aulncot(e,/2) ;

N
"

and using (2-19) we can write:
I,(x) = DyRy 1(X) + DaRoa(x) (2=38)

We will express Dy, Dy, 1 (x), V(x) in terms of V({) and
the terminal admilttance



O

Ha
Yy = LW/ve) (2-40)

as seen by the dominant mode at x={¢ . At x={ (2=38) and (2=39)
yiela:

DyRgy (L)4D R, () =1v(8)/Z, DyRS, (L)+D R (D)=, W(E) .

Then!

Ry(l) 1/
R'l(ﬁ) Y,

pevl|
%" "A

vy | /3, Rgp(t):
By= 'S A‘_ L) o 0

RfA(x) R.C(x)
solutions R (x), R (x) of equation (2=3), is a constant.
Referring to (2-18) we find that:

where A= » the Wroénskian of the particular

A= R (x) R (%) = » RJ3 (x) Roa(x) = 1/2b (2-41)

We may also use the definition (2<12), instead of (2-19),
that is:

1§

Rgy (%) (x+b)e‘1xU1(1+1c/212121(x*b))

(x+b)e” xU (1+1c/2|2|21(x+b))

Roe(x)

With the help of (2-9) to (2-11) and letting x-»eco;, we obtain!

Ryy (%) =2 ~yp-1%le/2 -me/k+21b ,1c/2 1x

Bél(x),ﬁmi,2-1¢1c/e e-Me/4+21b  lc/2  ix

X=r00 =

-1-10/2 -ﬂc/l" 10/2
2(x) X»00 i2 ‘
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o e a=l=1c/2 -ﬂc/# 1e/2

X=>o0
Then, in this case:

A= - % ‘ﬁﬂé/ﬂ*?ib . (2=42)

Returning to (2=38),(2-39) we can write:

vib)-
v(x) = v f(Rog(e)"'iz Y’c.Ro’.»_'(l))Rol(X)
'(1ze¥tncl(é)+Rcl(t)’362(2>] (2-43)
v(t)
I (x) A [(1R02(ﬁ)/z YtROZ(E))Rol(X)+
R (0)"1Ro1 (1) 2o Roa(x)] ¢ (2-44)

The input admittance 18 defined by

E_g(t)m Y Rop(L)IRG (0)-
2o[R. 5 ({)+1Z YR 02(8)1301(0)-

_=Lam ¥R ()R (1) 1RG,(0)
~[4Z YR 3 (1)+R]; (1) IR ,(0)

(2-45)

and in this way 1t can be e;cpres’é-éd in terms of Y, only.
With the use of (2-33),(2-36),(2-37) we can rewrite the set
(2-29) to (2-31) as follows:

Ryylx

x© ?(x)Elr(x,e)-fv- a, e M .- (c08@) “(2-46)

LoV

xBjqtx;0)% 2ﬁz 3ine * (2-47)
1

xHy o(%,0)= 7= 5825 (2-48)
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In the region {(¢x¢eo only higher TM modes appear. The
field is expressed by equations (2=24) to (2=26). In order to
satisfy the radiation condition we must now take Ft(x)—zlfiz*(x)j
where R,(x) was defined in Chapter 1; expliclit expressions for
this function will be given in Chapters 1 and 2, PART II. For the
odd angular solution we miust use:

. Te) = ?q(coeze) N Q= 1;3,550000 (2"}9)

Denoting Z z %— we can express the total exterlor field

]

qélsZ’Syﬂﬁ
in the region {¢x¢eo as follows:

x2 (P(X)Ear(ibe):% bq #;,(_(&)_ P_(cos0) (2-50)

XE g (x,0)= = (2-51)

. (2=52)

xﬂgp(x.é): f**ik'"’%f~f‘

Matching of the Fields. Input Admittance: The continuity

and boundary conditions 'é:c:zr"oss thé 78phericafl,rsurface at x={ ,
can bé expressed as follows?

i
ik

E,.(¢,0) = B (f,8) , o,{0(m-B, (2-53)

0 » 0£0£6, and m-0 < 04T (2-54)

{1

Hyg(£:0) = By y(Li0) , e {elme, (2-55)

We will first obtain an expression for the terminal
admittance Y,. Equatlon (2-45) will then provide an expression
for the input admittance Y,. At x={ we obtain from (2-48):

- —
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A ()]

_ __t — _K &, d

e 4> 217 “8ine ' % 7‘(‘,,'.'..‘1')" ae M (cos0) .
Integrating from 6=0, to @=m-9, we observe that, by virtue of
(2-27),(2-28), the terms correspending to the summation ¥ vanish.
Therefore:

kY, V(L) (=0, 4

fn»o Y, m
Jo, LH,(L,0)a0= ~gp—=]y ‘5

KY. V(L) e
*ﬁﬁiiﬁ— 1ncot §9=

Integrating xH,({,0) the same way, but using now its expression
in (2=52) and equating we finally obtain

(2<56)

t
The remaining step is the matchins problem. We write the

sets of equations (2=46)=(2-48) and (2-50)-(2-52) for x={ and
sub'stitute 1nto (2-55). It suffices to match onl'y the electric

is based upon the orthogonal properties or the Legendre functions
and is fully explained in references 5 and 6. Since the stratifi=
catlon does not affect the angular functions the matching problem
Tollows lilnes identical with the case of homogeneous media. There
result two infinite systems of linear algebraic equations relating
the sets of coefficients a, and b . 'rhe coefficients themselves
are determined by solving t.hese linear systems of equations. In
the present case the only difference from the homogeneous problem
appears in the coefficients of equations (2=46)-(2-48) and
(2-50)=(2=52), when written for x={. We will not, therefore,
repeat the process of matching. It follows the method explalned
in full in references 5 and 6. The results in the present case
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Tt e innn

are as followst

. s L .
&= % uv‘qbq (2=57)

(2=58)

et

. aM,, (cose ) )
=TT 81n6 P, (cose, )= 9 - (2-60)

(2-61)

o3
T2
]
}il -
1

(2-62)

N
1]
I'

%R R | e
Substituting the a 's from (2-57) into (2-58) we can obtain

the following infinite linear set of equations containing only

the coefficients bq:

[ ]

, .
¥ Vav % YvnPn

V(Q)P (cosé ) - + 2 . (2-63)

2025 72z
This shows more clearly that all b_'s (and, consequently, all
a.'8) turn out to be proportional to V({).

From this point on all the approximations for the solution
of (2-57) and (2-58), or (2-63), in special cases, like small-
angle cones, large-angle cones etc., follow lines identical with
the case of homogeneous media, as explained in references 5 and 6.3

.o‘l’l

Small-Angle Blconical Antennas: In the limiting case of
9 approaching zero, the system of equations (2-63) can be solved
(5 pp. 833-834, 12, 13). The method of solution, applicable in

the present case, 1s identical with the one used in reference 5.

The following limiting values hold as 65> 0:
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Calling:
L7 .
By= = o By (2=67)

and making use of the above relations, we can write equations
(2=63) as follows:

2 </’ B
a—q% B, +Q(Q+1) %% if-’-m‘ff' V(k,m,q) =1 (2-68)

e (k+b)(k+b+1)(k+b-q)(k+6+q+1)(m-k-b) (m+k+b+1) - (2-69)

In the limit 6,+0, 8—~0 we have:

¥(x,m,q) ~ 22 2 0 1f k#q,mn#k
Nb 0 ir k;ﬁq,m—:k:
~b 20 iIf k=q,n#k
° 1 ]
= = if k=q=m .
q(q+1)(2q+1) '

Only the last case, k=q=m, contributes significantly t60 the sums
in (2-68), which, in the 1imit, can be simplified to:

7+
3qeT Bq~ 9(a+1)B 2 q.,,b/[g(qﬂ)(zqﬂ)] £1 .

Thus:



It 1s interesting to examine how Y, and ¥, behave as {, the
electrical length of the antenna, approaches zero. This shorts

antenna limit will serve as & check and explanation of the
numerical results obtained in the next chapter, in this particular
case. Using (2-61) and (2-62) we can write:

2t - 20 = HB IR (O/Ry (1) = R () /Ry (4)]

As [->0, the behaviour of R1 (¢) and R, q(Z) can be found from the
results of Chapters 1 and 2, PART II. We refer, first, to equation
(1-54) ¢

Ryq(L)

i

On the othér hand, series expressions for Ry (t) and R, ({) can
be written down at once, by merely 1nspect1ns equation ?1-50):

"

qu(t) Lq+l(1*alﬂ+......)

b +b. Z+...

() (0)1nd + =2t | b,# 0 5 q = Integer .

Raq't) = Ryqlt)in 74

In Chapter 1, PART II, these series are developed in full, but,
for our present purpose, we can do without any reference to the
results of this chapter. Thus, as {-»0:

e"'ol' q+1

¢
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(2-73)

_q_ Yo o1 T Yot .
= Ea%E Teagl+e.. - (%2 (2-74)

_ Ryt /Ry () I (A o/Ay ) [RG

1+ (542/141>E?2q(£)/§1é(¢)]"W””

(q#1)/0 = (8, /A, (b,0/L2%*3)
2 - q S — ,ag'i‘“igli‘ii“égi;i’_"‘“'i" — L - -?- (2=75)

(2=76)

_ .
In the ”a.bove, ,equat.;on use of thg identity g qlasiy - 1n2 was
made. Therefore, as (=0, ¥, — 0.
The input impedance 1s given by (2-45), which, with the use
of (2-18), reduces to:
’ -
Rp () 12T Rop(0)

2.z 2bi% 2o Ot O . (2=-77)
! © Rgy (£)+13 YR (L)

Using (2-13) together with (2-16) and (2-17) we find:

Rol(-“ = 1+92 (7%2:;3 + O(C}) = 1+ ‘:'55(24-0('.3) (2-78)



Rpa (L) = §§§€+ 0(L3) = = &1 + o(®) (2-79)

5‘5 + 0(¢2) (2-80)

]
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Ryo(l) =25 + 0(t) . (2-81)

Substituting into (2=77) and letting {—0, we obtain:

ig+0(L)
[14=Bin2ll+0((3)

mKZ,

oo’

2,¢ =2

We observe that, as (=0, 2,— o6 as 1/L. For a non-dlssipative
medium a, b, I, and { are all real and Z, is large and capacitive.
For a dissipative medium a, b, { =xr_, Z, are complex and both

R, and xi go to infinity.

Wide=Angle Biconical Antennas: In the case of homogeneous
media, 1t is well known that a good approximation to Y, can be
obtained, if we neglect the higher order internal TM waves (6
pp. 41-43, 13, 15). For stratified media, however, it can be
anticipated that such an approximation will not be as good,
since, with the assumed variation f(.) = (x+a)/(x+b) , the
stratification function changes more rapidly for small x, 1i.e.:
inside the antenna in region (1), figure (1-2), f(x) varies more
rapldly than outside. It 1s natural to assume, that more internal
waves will be needed in this region to account for this greater
variation. One 1s left with no other alternative but to solve
the infinite set of equations (2-57) and (2-58). It 1s still very
instructive, however, to obtain a solution in the following two
cases: when only the principal TEM mode is retalned, all the
internal TM modes being neglected, and, secondly, when, in
addition to the principal TEM mode, the first TM internal mode
is retained and all the higher neglected. In both cases, the set
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of equations (2-57) and (2-58) can be solved explicitly for the
coefficlents b.. In the case of homogeneous media, the difference

obtained in this manner, is practically very small (6 pp. 41-43,
13), justifying the assumption whereby all higher internal modes
weére neglected. For stratified media, as the results of Chapter
3 show; ¥, = ¥,q 18 small for relatively long antennas, roughly
one wavelength and longer. For such lengths the assumption that

the internal TM waves are unimportant and can be neglected is
gtill valid. For shorter antennas, howéever, in the same medium,
Yto* Ytl and; as a result, Zi@a Zii aré large, in agreement with
the prediction mentioned above. One should then retaln more
internal waves and solve the system of equations for the bq'é
separately for each assumed length { in this range of values.

In the zeroth order approximation neglecting all internal

TM modes, i.e. assuming that all a = O, we immediately obtain
from (2-58):

(2-83)

(2-84)

For the first order approximation we retain the first
internal TM mode, in addition to the principal TEM mode, and
neglect all the others. In other words we assumes

>3 l L - — -_ \ Dan
g‘fl; % uvl_lqbq ’ Q-vg-i—' EAV3= seee =0 (2 85)
From equation (2-58) we obtain in this case:
+
Y

.o o +1 + . . tq . -/ -
bg= ~~9%%39-11!¥q V(L) 2q(coge°) + ;1qu12; UyiPq (2-86)
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It 15 convenient at this point to introduce a change in the
notation to make the formulas comparable to C. T. Tai's results
in the homogeneous case (13; 6 pp. 41=43). We call:

=0, ,
qu»‘[éo M, (cose)P (cos6)sine de (2=87)
N _f"‘égf» N 12irea sa Aeaa)
N, ;7‘90 (M, (cose) ]°s1ne 46 R (2-88)

Then, from (2«59),(2-60) and Schellkunoff's formulas (6 pp. 47-
48), we have:

u = o leasd)alend) s 85)
Yvg™ qu/Nv » o Ve T Selesl) qu . (2<89

Equations (2-86) can now be written as follows:

| wp(2q+1) ¥? (2q+1)q(q+l) I
b = - —— v(t)P (cose ) --9 "~~Aﬂ~*-“~'ﬁ”1q Ay (2=90)
Q o vl 2vy(ve#l) Sl
LS I:' A A
Av1= % Ivlqbq y (2-91)

Multiply (2-90) by I.,, and sum over q = 1,3,5,... « With the use
of (2=91) we obtain:

o vla

Ay = B v(L):i (20+41)¥gP, (cos0, )T,y =
Avl 2
-l T (2g41)q(qr) Y .
YN 12v1(v g )Y Tnyg
or:
o /e VO (2012)¥gFo (0800 Typg
vi :i (2a+1)a(q+1)¥ I

1 + &

Y‘l vlav (v +1)

Substituting back into (2-90) we find:
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b= = ggﬁ V(L) [ (20+1)¥;R, (cos0,)= Yo(2a4d)a(asl) I,y
='(2q41)Y*P_(cos0. 1 .
; L2 Rof 20%g vl —1 . (2-92)

2v1(v +1)Nv1Yv1+Z (2q+1)q(q+1)¥ vlq

Finally from (2-56) we obtain:

[2 (2q+l)Y (cos@ )14, 12

‘n‘KZ avl(v +1)NV1Yv1+ (2q+1)q(q+1)Yq qu

Y= Yo

This equation is in agreement with the result of C. T. Tai (6
pp. 41=43, 13) obtained, for homogeneous media, by application
of a variational principle.

For the short antemns limit, letting [0, we find from
(2-61) and (2=75):

Then from (2-84):

2q 2 ) . o
' q° q+ 4
Thus, after comparing with (2-76), in the limit {—0 Y, ang,
consequently, 21 for wide-angle antennas behave in a way similar
to thin antennas, as explained in the preceding subsection.



CHAPTER 3

NUMERICAL COMPUTATIONS

INTRODUCT ION

Numerical results were obtained with the use of an IBM T090

heretofore numbered I to VI, and in each ¢ase the cone angle 96,
figure (1=2), was given 8 different values: '
0,= 1/20°, 1/4%, 1°, 2%,  for the smell-angle case,
6,= 30°, 39.23°, 55°, 70°, for the wide-angle case.
The speclal value 6 = 39.23° in the latter case was chosen,
because 1t ylelds an integral value for the first characteristic
root of equation (2-28), namely:

vy =3 (3-1)

facilitating the evaluation of Y., and 2,; (13).

In each case the input impedance 2, =R, + iX, of the
antenna in Ohms was computed and plotted as a function of the
physical length of the antenna r,. For thin antennas, the
terminal admittance ¥, 1s independent of the cone angle eo,

according to equation (2-71). We call:

(T . (3-2)

v = anetam - 52v - _ teu s’/ 37
YT = GT+iST = ZoY, = ”’Fi%?%

This characteristic quantity for thin antennas was also plotted
in Omms versus r, in each case, figure (3-2).

Case I: 1In view of the fact that no experimental data are
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avallable concerning the behaviour of a biconical antenna in a
radially stratified medium and in order to check the theory, we
considered in Case I a non-dissipative medium slightly stratified
8o that, at a certain frequency, the stratification function has
the following form:

$(x) = ;ﬁo , &=12 , b=10 (3=3)
= , L=xr, (3-4)

(3-5)

Thus, at the origin €(0) = 1. 2€,; while for large r the die-

lectric constant reduces to € ’ the free=space value. 21~R1+1x1

and, for thin cones, YT=GT+iST, in Ohms; were plotted in figures

(3=3),(3=4) and (3=2), respectively, versus {= mjueoro. It is
natural to anticipate that these curves will be close to known
results (5 p. 837, 15) for homogeneous media with €=¢, and €=
=1.2€,, thus providing a check on the theory. The prediction is
completely Jjustified as wlll be seen in the next section.

Cases II to V: In all these cases.the antenna is immersed in
a stratified and dissipative medium similar to the conducting

solution used in Iizuka's experiments with linear antennas (14).
The complex dielectric factor is:

E(r) = e(r)[1-27(r)] (3-6)

where T=tand=o/we, the loss tangent, can vary from 0.036 to 8.8,
vhile €/€, changes correspondinly from 78 to 69 (14 p. 3). In
these ranges such variations can be represented very closely by
the following functional dependences!

(3=7)
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o\ _ . T¥80.036/T,
T(r) = Ty =g ; (3=8)

Thus, at r=0: €(0)=78¢,, T(0)=0.036, while for large r, €(r)=s€,¢,

and @(r);ﬁsTfs The parameters €, and T, control the final values

of €(r) and T(r), their ranges belng:

while 4 affects thelr slope. There is a correspondenceé between
values of € and T=0/we€, which, for the conducting solution under

(14 opp. Ps T)s It is a simple matter to see if the assumed
variations (3-7) and (3-8) agree with this curve. Even in the
extreme case €,=69 and T,=8.8, one obtains:

(3=~10)

a relation, which, in the above ranges (3-9), agrees closely with
the experimental curve mentioned above. For intermediate values
of €, and T, the ranges of €(r) and T(r) are smaller, i.e.

T8 €(r)/e,yep 5  0.036&T(r)& T, (3-11)

and the correspondence between €(r) and T(r) is correct, as long
as €, and T, themselves satisfy (3-10). 8o, €, and T, are not
independent parameters, but are related according to equation
(3=-10).

The assumed variations (3-7) and (3-8), in addition to
satisfying the above requirements, lead to a stratification
function ¢(x) in the form (1-48). Substituting (3-7),(3-8) into
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(3=6), we obtain:
@ M'E(r) o2ue, o€p(1-1T,) P+d(i*:2r036)/(1 ATy) . (3<12)
Calling:
(3-13)
(3=14)
(3-15)

(3-17)
(3=18)
(3<19)
We can also write (3-7) and (3<8) as follows:
€lr Kr+S Kr+8(0.036/T,) ,
ot = €, ) T(r) = T, —_—1 . (3-20)
€ : Kr+s(ef/78) ® kr+8

Two independent parameters appear: Tf, controlling the final
value of the loss tangent of the medium, and S, controlling the
slope of the stratification function. €p is found from '1‘f with the
uge of (3-10). Different values of these parameters correspond to

different media. Note, also, that S depends on frequency. The
independent variable is the physical length of the antenna e
Introducing electrical units and referring to the common initial

values, we use as independent variable the following quantity:




Note that x varies in the fourth quadrant of the complex x-plane
from O to s along the atraight line connecting the origin and
the point x=b.

Cases II to V refer to different stratified media with the
following values of the independent parameters:

1

(=]

£ 1, 8 =28, éfi 76.897 B (3-22)
=4, éfﬁ 76+ 897 (3=24)

=2, B=6, €=715.785 . (3-25)

Case

e
1]

It

o

II1:

Q
o
o
P
=

Cage IV :

3

.
|
m)

Case V ¢

=
1

Cases II, III, IV can also be cons8ldered as referring to the sameé
stratified medium, but correspondig to different frequencles.
€(r)/e, and T(r) for all 4 cases, as glven by equation (3-20),
are plotted in figure (3=1), versus y = oue 78 r = [78/e, xr.

Case VIt In contrast to thé previous cases, where the
eonductivity of the medium increases away from the center of the
antenna, Case VI refers to a medium in which T(r) starts, at r=o0,
from a high value T, and decreases to 0.036 as r-so, while
€(r)/e, starting from €, increases to 78 as r-oo.

€(r) = € (3-26)

 rea?,/0.036

T(r)

It can easily be checked that the requirement of correspondence

69<€e; S&(r)/fe <78 8.8%T, % T(r)30.036 , (3-28)

as long as €, and T, satisfy (3-10).



In place of (3-12) to (3=20) we have now:

- red (1= 11'1)/(1 =10.036)

0% E(r) = 0Pue 78(1-10,036) ———ed (3-29)

r+a(78/ )

|

g (o  KP+S , Kr+S(T /o 036)
€ kr+8(78/€,) K48

(3=37)

As independent variable the same quantity:

{=0o ue°78 r, = KT, (3-38)

was chosen. The following values were given to the parameters:
Cage VI : T,=1, S8=6, €= 76.897 (3-39)
e(r)/é and T(r), as given by (3-37), are also plotted in figure

(3-1), versus the same varlable y = mlﬁém78 =Kr .
In Cases II to VI equation (2-37) dorinins z must be

written as follows:
Zo = E@u:lncet(eo/a)]/ﬂﬁ . (3-40)

For all Cases II to VI and in terms of the same independent
variable £ = ofue 78 r:

3
i
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Y? = 22y, = GT+18T, for thin cones, in Ohms, is plotted in figure
(3=2). The input impedance Z,= R,+1X,, in Ohme, 1s plotted in
tigures (3<5),(3<6),(3=7),(3=8), for 6= 1/20°, 1/4°, 1°, 29,
respectively. For wide-angle cones, the zéroth order approximation
Zy= Rio+1xio, in ohms, is plotted in figures (3=9),(3-10), (3~11),
for 6= 30°, 55°, 70%, respectively. Finally, for 0,= 39. 23°, the
zeroth and first order approximations Zio and Zil’ in Ohma, are

plotted in figures (3-12) (3-13) (3-14) (3=15) and (3-16), for

Cases1II;

DISCUSSION OF THE RESULTS AND CONCLUSIONS

All computations were performed with single, 8-decimal,
precision. By far, the major problem was the evaluation of Rl(x),
Ré(x), Rz(x), R4(x) and their derivatives, as well as the coeffi-
clents of the asymptotic expansions (1=52),(1=53). Remarks relative
to the computation of thésée quantities will be postponed until,
in Chapters 1 and 2, PART II, the defining formulas are developed.
As a general observation, we note that the smoother the stratifi-
cation function, thée c¢loseér the singularities x==a and X=<b of
region between the convergent and asymptotic series expressions
for R, (x) or R,(x), wider and the agreement better. In Case I, for
instance, 1n the middle of the overlapping region, agreement of
4 gsignificant decimals was obtained for the lower order functions.
As the stratification function becomes sharper, the overlapping
reglon narrows and the agreement worsens. This was observed in

Cases IV and V, characterized by a sharper q(x); in a region
falling roughly between { = 3.4 and (= 4.2, for thin cones, the
plotted points deviated slightly from a smooth line, in contrast

to all other regions and cases where the smoothness of the curves
was remarkable. No attempt was made to obtain more accurate values
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in this short region in Cases IV and V, since the deviations
vere small and thé use of an improved series would alter the
computer program.

?°r'W1aé“3ﬁsie «cones, the situation is less éfitiéai in this

reasons similar to the homogeneous case (12, 13) Furthermore,

in equation (2=71) for thin cones, Z - 2= 5% [ (D )Ry (@) =
= qu(t)/h (L)] appears. In contrast, only Zq’ [+a[R4q(l)/R4q(¢)]

appears in Y, and Y,,, equations (2=84) and (2=93), for wide-
angle cones. In dissipative media; R T (Z) and Ra () are no
longer complex conjugates of each other and the asymptotic series
for R4 (Q) always starts working earlier, i.e. for samaller |£|
than the asymptotiec series for R (Z) The séparating region
becomes wider as the dissipation increases. At the same time,

the convergent series for qu(l) converges faster and works
farther than the convergent series for R, (Z) Therefore, the

evaluation of Rl (1) ana Zq through

,qu(ﬂ) = A]_3R3q(¢) + Alll-Rl;q(“’
a8 well as the evaluation of qu(i) and z; through
Ruqt) = AygRig(l) + AyaRpq (1)

become critical in the intermediate region, making the evaluation
of Y, less gccurate for thin cones. The former difficulty 1s also
the reason for not extending the curves for thin cones as far as
ror R (l) can not be used yet. These remarks do not apply in the
real case. R (l.) and Ryo (L) are complex conjugates of each other,
as will be soen in chapter 1, PART II. Thus, 33(1) is not actually
involved.
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If the variations of ¢(x) are still sharper, no overlapping
region may exist. If one is interested in lengths { falling in

the region where nelther the convergent series work, nor the

asymptotie are valid, one should try to develop bettéer convergent

gseries (such possibilities exist as will be seen in Chapter 1,

PART II), or else use elther analytic continuation or numerieal

integration of the differential equation. The author prefers
.analytic continuation to numerical integration.

The overlapping region between convergent and asymptotie
expressions of the funetions narrows and the aceuraey in this
regilon worsens as the order v or q of the functions increases.
The same is true regarding the accuracy with whieh the coeffi=
élents A41, A42 etc., of the asymptotiec expansions (1<52) and
(1=53) are evaluated. Fortunately, as the order incéreases, the
effect of the higher-order modes on the final results diminishes
and the restrictions of accuracy can be relaxed progressively.

The preceding remarks show that the accuracy of R1 and x1
1s not the same for all values of @ in a given case. It may
also differ from thin to wide-angle cones in the same medium.

The variation in accuracy increases the sharper the stratification
function becomes.

Case I was chosen to check the theory by comparison with
available results in the homogeneous case (5 p. 837, 15).
Comparing with the results plotted in figures (3=3) and (3= 4),
we observe a remarkable agreement. For e 1 and 2 s the

peculiar behaviour of R1 at the second and third maximum and of
xi near {= 9 is reproduced here in almost identical form (5 p.
837). The same 1g true about the behaviour of R, and X,  around
their maxima for 6 = - 55° and 70° (15). In case I, 20 higher order
terms were retained, l.e. terms up to and including q = 39 were
kept. The accuracy for R, and X, 1s of the order of o,lA,, even
better for small £{. In the impedance transformetion from Y, to
Z,, through equation (2-45), both expressions (2-12) ana (2-19)



for R (x) were used, yielding identical results. The former, in
terma of the asymptotic series (2-9) and (2-<10), worked very well
in Case I. In all other Cases II to VI, (2=19); together with
(2-16) and (2-17), workea better and was used.

For e 39.23 » the difference betweeén Z10 and zil’ as seen
in figure (3-4), is very small for {3 4. Thus, for wide-angle
cones, Ziﬁ 1s & good approximation to Zi for such lengths.
However, for { {4 the difference 1is large, becoming larger as {
decreases, in contrast to the homogeneous case where this
difference is small up to L = 0 (6 pp. 4143, 13, 15). The reason
for this disagreement was explained in the last subsection of the
preceding chapter. One must keep more internal TM modes when
{4 and solve the system of equations (2=57);(2=58) separately
for each {. This holds for 6= 30°, 55°, 70° and all values of e,
in this range. Zio’ as plotted in figure (3-4), is only a rough
epproximation to Z, for ¢ <4. The same must be said about Z4qs
8ince values of Z12 or 213 are not avallable for comparison.

The number of higher modes retained in Cases II to VI was
restricted by the accuracy, with which the coefficients Alh’ A13
etc., of the asymptotic expansions (1-52),(1-53) could be
evaluated. With an 8-decimal machine precision, beyond a certain
Qpax (Which decreases as the stratification becomes sharper), it
was not possible to evaluate these coefficients with any reason=
able accuracy. This restriction was mentioned previously. It did
not prove to be a serious problem in the cases investigated in
this research. For sharper stratifications one can use double
precision arithmetic, if it proves necessary. Beyond a certain
{, the asymptotic series for Ra(f) can be used for the direct

evaluation of 2% = 1/

q =1 ~q = éig [Raq(l)/h4q(£)] « For wide-angle

cones, that is all that is necessary for the evaluation of Yto
end Y,,, according to (2-84) and (2-93). It was cbserved that for
such L, in general, 2,  or Z,, were good approximaticne to Z,.

Smdri s e L
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Since the coefficients Aqys A13 ete., are not involved any moére,
the number of terms retained can be inereased at will to yield
the required accuracy for such L. In Cases II to V, 20 terms, up
to and ineluding g=39, were retalned in this regilon.
We give below Yyax? the order of the highest mode retained
for thin cones and wide=angle cones of short length.

Case II : CH 33

Case TII: q .=

Case IV : q .~ 21

Vb qpay= 25
se VI : g

[

Cas

max
Note how Uax drops in Cases IV and V, characterized by a sharper
stratification. The accuracy of the final results is better than
17, in Cases II, III, VI, about 17, in Cases IV and V. It improves
for small | and, for wide=angle cones, beyond a certain {, after
which 1t was possible to retain more modes, as explained previous-
ly. For thin cones, in Cases IV and V, the accuracy becomes worse
than 17, in the reglon extending roughly between {=3.4 and (=4.2
for reasons explained previously. Beyond {=4.2 it improves, as the
asymptotic series for R,(I) becomes more accurate.

In general, as far as the accuracy of the final results 1s
concerned, the number of modes retained is not as critical as the
accuracy with which the functlions are evaluated. In Case I, even
with 15 higher modes retained, no considerable change occured in
the final results.

The difference Z1 - Z11 for © —39 239, figures (3-12) t
(3-16), is small beyond L =4, but large for {{ 4 for all Cas
II to VI. The same remarks as given for Case I, apply to th,g
cagses as well.,

The behaviour of R, as >0, is in conformity with the
approximate formulas (2-82) and (2-95). With no dissipation,

«m
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Case I, R;—0 as L-+0. In dissipative media, Cases II to VI, it
goes to infinity and at a faster rate as the dissipation increades.

Concerning the more lmportant effects of dissipation, we
observe the following: The oscillations of Ri and xi versus { are
not displaced. The maxima and minima oc¢cur at almost the same
values of {, quite independently of the profile of the stratifi-
cation. Even in Cases II, IV and VI, for example, characterized

by quite different ¢(x), the displacements of resonance and anti=
resonance in Z, are negligible. Thus, even in stratified media,

the eleetrical length of the antenna is an important characteristic
quantity, determining its properties in a manner quite independent
of the medium.

However, the oscillations are dumped as the dissipation
increases and R, and X, become almost conatant béeyond a certain
value of [. The effect 1s more pronouncéd and occurs at shorter
lengths for higher dissipations as well as for larger éo. These
effects have been observed experimentally in dissipative media
(14). By incéreasing the length of the antenna, we do not affect
the input current, hence 2,, because the current leaks into the
medium along the length of the antenna and quickly becomes
negligible away from the ¢énter. Beyond this point, additional
antenna length does not affect the current distribution.

For similar reasons, in stratified media the value of the
dissipation in the immediate vicinity of the antenna plays a
decisive role on 1ts properties, the value of o away from the
center having practically no effect. Such effects have been
observed experimentally (14). They can be seen very clearly here,
comparing Case VI with the rest. Looking at figure (3=1), we see
that medium VI is less dissipative, overall, than the media in
Cases IV or V, for instance. However, T(r) starts, at r=0, from
a higher value in medium VI than in media IV and V. In the
immediate vicinity of the antenna, medium VI 1s more dissipative

than medium IV or V. The above-mentioned effects of dissipation
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are much more pronounced in Case VI than in any other case.

Another result in agreement with experiment (14), concerns
the final, almost constant, value of xi for large ¢. Xi is
induetive in this region, its value getting larger as the dlssis
pation increases. Compare Case VI, especlally; with the rest.

The preceding observations show that, in dissipative media,
no additional useful information 18 gailned by extending the
computations beyond the value of {, after which Zi becomes

‘practically constant. Difficulties in evaluating Ri(f), RQ(Z)

and Rj(I) for large |{], mentioned previously, are avoided. For
higher dissipations, the value of {; up to which the computations
must be carried, deereases.

A8 a final remark, we observe that the whole analysis is
based on the assumption that the stratification funetion f(r) can
be approximated by a certaln functional dependence. In the light
of the results obtained, this assumption 18 justified. Cases II,
III and IV refer to media for which f(r) differs from case to
case, but not much and keeps the same general form, figure (3-1).
r%%% varies in-between f%i) and rfz)a So does 2}', varying in
all cases and for all ¢ in<between z;I and Z%v and quite close
to them, figures (3=3) to (3-11). The same behaviour 1s observed
in Case I, 1f the comparlson is made wlth homogeneous media for

which €/e = 1 and €/e = 1.2 . f%r, can be considered as an

approximation to these homogeneous media. One can also state that,
in 2 dlssipative and stratified medium, the approximation of the
actual variation by the assumed f(r) must be better for small r
(1.e. in the immediate vicinity of the antenna) than for large r.
Bven large discrepancles, occuring away from the center, will not

affect the results.
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